Logistic regression analysis of ultrasound in diagnosis of benign and malignant solitary thyroid nodules

超声诊断甲状腺单发结节良恶性的 Logistic 回归分析

黄健 闫安辉 李望晨 郑传利

[文献标识码] B

资料与方法

一、临床资料

选取 2014 年 5 月至 2016 年 9 月潍坊医学院附属医院收治的甲状腺结节患者 169 例, 男 42 例, 女 127 例, 年龄 13~70 岁, 平均 (42.5±12.7) 岁。均为单发, 术前均行超声弹性成像检查, 均经手术病理证实。良性 118 例, 其中结节性甲状腺肿 97 例, 甲状腺腺瘤 19 例, 桥本氏甲状腺炎 2 例; 恶性 51 例, 其中乳头状癌 49 例, 隐性癌和淋巴瘤各 1 例。

二、仪器与方法

使用西门子 S 2000 彩色多普勒超声诊断仪, 9L4 探头, 配备实时超声弹性成像技术。患者取仰卧位, 平静呼吸, 采用扇形探头, 先行常规超声扫查甲状腺左叶、右叶、峡部及周围淋巴结, 测量病灶大小, 观察结节形态、边界、纵横比、回声水平及血流分布等。然后启动超声弹性成像模式, 采用双幅对比显示病灶区, 测量病灶区硬度进行弹性评分。由两名具有高年资超声医师独立进行超声诊断, 对结果不一致的病例, 经多人讨论后确定。

常规超声特征中, 具有甲状腺结节良恶性诊断意义的主要有形态、边界、同声低酷似度比、纵横比、回声水平、声像均匀性、微钙化等; 超声弹性成像分为 0 级、1 级、2 级、3 级、4 级。Logistic 回归分析时将回声水平、血流多分类变量转化为亚变量。超声弹性成像评分中 0 级、1 级及 2 级合并为一组, 为良性; 评分 3 级、4 级合并为一组, 为恶性 (图 1)。

三、统计学处理

应用 SPSS 20.0 统计软件, 以病理结果为标准, 采用逐步向前法进行多因素二元 Logistic 回归分析, 对回归参数估计值采用 Wald x^2 检验, 绘制受试者工作特征 (ROC) 曲线评价 Logistic 回归模型。P<0.05 为差异有统计学意义。

结果

甲状腺单发结节超声特征分类和 Logistic 回归赋值见表 1。二元 Logistic 回归模型分析结果见表 2。将良性结节间差异有统计学意义 (P<0.05) 的超声图像特征值和患者性别、年龄为自变量, 采用逐步向前法进行多因素分析 Logistic 回归分析, 进入回归模型且回归系数有统计学意义的自变量为: 形态、微钙化、血管走行、超声弹性成像评分及年龄, 回归模型为: Logit (P) = -3.135 + 1.895×形态 + 1.643×微钙化 + 1.053×血管走行 + 1.577×超声弹性成像评分 - 0.089×年龄。

对回归模型进行似然比检验, 该模型具有统计学意义 (χ^2 = 119.098, P<0.001)。利用该回归模型对 169 例甲状腺单发结节进行预测, 以 P<0.5 为良性, P>0.5 为恶性, 其敏感性为 94.1% (48/51), 特异性为 89.0% (105/118), 准确率为 90.3% (153/169)。

绘制该 Logistic 回归模型诊断甲状腺单发结节良恶性性的 ROC 曲线, 其曲线下面积为 0.908, 见图 2。

讨论

本组通过对甲状腺单发结节的常规超声和超声弹性成像各特征变量进行 Logistic 分析并建立回归模型, 进入模型的变量为: 年龄、形态、微钙化、血管走行及超声弹性成像评分。通过回归模型, 可以看出年龄与结节恶性率呈负相关, 表明随着年龄的增加, 甲状腺单发结节的恶性几率减小; 形态、微钙化、血管走行
表 1 甲状腺单发结节超声特征分类和 Logistic 回归赋值

<table>
<thead>
<tr>
<th>超声特征</th>
<th>分类</th>
<th>Logistic 回归赋值</th>
</tr>
</thead>
<tbody>
<tr>
<td>形态</td>
<td>规则、圆形、类圆形或椭圆形</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>不规则，大分叶状、小分叶状或毛刺状</td>
<td>1</td>
</tr>
<tr>
<td>边界</td>
<td>清晰，能够明确区分甲状腺结节与周边实质</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>模糊，不能区分甲状腺结节与周边实质</td>
<td>1</td>
</tr>
<tr>
<td>周围晕</td>
<td>有</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>无</td>
<td>1</td>
</tr>
<tr>
<td>纵横比</td>
<td><1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>≥1</td>
<td>1</td>
</tr>
<tr>
<td>内部结构</td>
<td>囊性或囊实混合性</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>实性</td>
<td>1</td>
</tr>
<tr>
<td>回声水平</td>
<td>高回声，高于甲状腺实质回声水平</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>等回声，与甲状腺实质回声水平相同</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>低回声，低于甲状腺实质</td>
<td>2</td>
</tr>
<tr>
<td>回声均匀性</td>
<td>均匀</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>不均匀</td>
<td>1</td>
</tr>
<tr>
<td>微钙化</td>
<td>无钙化、粗钙化</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>微钙化，直径＜1 mm 点状强回声</td>
<td>1</td>
</tr>
<tr>
<td>后方回声</td>
<td>无</td>
<td>0</td>
</tr>
<tr>
<td>衰减</td>
<td>有</td>
<td>1</td>
</tr>
<tr>
<td>血流分布</td>
<td>结节内无血流信号</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>结节周围出现血流信号</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>结节内出现点状血流信号</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>结节内出现丰富血流信号</td>
<td>3</td>
</tr>
<tr>
<td>血管走行</td>
<td>规则</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>不规则</td>
<td>1</td>
</tr>
<tr>
<td>超声弹性成像评分</td>
<td>0-2级</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3-4级</td>
<td>1</td>
</tr>
<tr>
<td>病理结果</td>
<td>良性</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>恶性</td>
<td>1</td>
</tr>
</tbody>
</table>

表 2 二元 Logistic 回归模型分析结果

<table>
<thead>
<tr>
<th>自变量</th>
<th>偏回归系数</th>
<th>标准误</th>
<th>t 值</th>
<th>自由度</th>
<th>P 值</th>
<th>OR 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>常数项</td>
<td>-3.135</td>
<td>0.798</td>
<td>15.434</td>
<td>1</td>
<td><0.001</td>
<td>0.368</td>
</tr>
<tr>
<td>年龄</td>
<td>-0.089</td>
<td>0.028</td>
<td>8.242</td>
<td>1</td>
<td><0.001</td>
<td>0.857</td>
</tr>
<tr>
<td>形态</td>
<td>1.895</td>
<td>0.511</td>
<td>13.752</td>
<td>1</td>
<td><0.001</td>
<td>4.955</td>
</tr>
<tr>
<td>微钙化</td>
<td>1.643</td>
<td>0.584</td>
<td>2.813</td>
<td>1</td>
<td>0.033</td>
<td>4.367</td>
</tr>
<tr>
<td>血管走行</td>
<td>1.053</td>
<td>0.528</td>
<td>1.994</td>
<td>1</td>
<td><0.001</td>
<td>2.581</td>
</tr>
<tr>
<td>超声弹性成像评分</td>
<td>2.377</td>
<td>0.499</td>
<td>22.690</td>
<td>1</td>
<td><0.001</td>
<td>7.513</td>
</tr>
</tbody>
</table>

![Logistic 回归模型诊断甲状腺单发结节良恶性 ROC 曲线](image)

图 2 Logistic 回归模型诊断甲状腺单发结节良恶性 ROC 曲线

叶状:75.4%(89/118)良性结节表现为形态规则，呈不规则圆形或分叶状。微钙化在甲状腺癌中较为常见，是超声诊断甲状腺恶性结节的特异性较高的指标之一。血管走行不规则是诊断甲状腺癌的重要指标之一，与以往研究一致。其病理为甲状腺单发结节的癌细胞破坏了结节的正常血管，肿瘤生长不均衡，使血管迂曲，不规则，在超声图像上表现为血管走行不规则。

超声弹性成像能反映测组织硬度的信息，而组织硬度与内部病理结构密切，在甲状腺单发结节良恶性诊断中，随着结节硬度值的增加，恶性发生几率升高。本组 51 例中恶性结节中 49 例为乳头状癌，该肿瘤呈浸润性生长，间质常硬化伴有多纤维和血管，见分枝细长乳头，间质内常出现钙化砂粒体。

由于钙化砂粒体在常规超声图像中不明显,易导致漏诊；但由于恶性肿瘤硬度大，其弹性成像评分较高，弹性成像通过提供组织的生物力学信息，与常规超声互为补充，能提高诊断的准确率。

本研究有一定的局限性，如样本量偏少，样本组成类型不合理。今后研究中应加大样本数量，样本组成类型，并考虑超声造影和其他超声技术的特征参数，建立更加综合、有效的回归模型，从而检验提高甲状腺单发结节良恶性诊断的准确率。

总之，二元 Logistic 回归分析模型筛选年龄、形态、微钙化、血管走行、超声弹性成像评分特征变量，对甲状腺结节良恶性诊断价值较高，于临床工作中应予以重视。

参考文献

Early ultrasound suspected cystic renal cell carcinoma and long-term follow-up: a case report

超声早期疑诊囊性肾癌并随访 1 例

江鑫 王彦青

患者女，44 岁，平素体健，无家族遗传病史。5 年前于我院行健康体检超声检查于左肾上部外侧见一大小为 3.9 cm×3.7 cm 类圆形囊性无回声 (图 1)，边界清晰，肾实质处局部囊壁增厚，不光滑，最厚约 0.8 cm;CDFI 示壁内见条状血流信号。超声提示：左肾囊肿囊内，囊性肾癌不除外，建议增强 CT 检查。患者拒绝行增强 CT 检查。后我院对其定期 (14, 23, 34, 40, 48 个月) 进行超声复查，前 4 次超声复查发现囊肿大小逐渐增大 (依次为 4.3 cm×3.6 cm, 4.7 cm×4.2 cm, 5.1 cm×5.0 cm 及 5.6 cm×4.6 cm)。超声像图特征无明显变化；第 5 次超声复查见囊肿大小为 6.0 cm×4.6 cm，其内实性回声明显增多，紊乱，囊性部分透声性差，并见多个分隔回声 (图 2)。超声提示：左肾囊肿囊内实性病变，囊性肾癌可能。增强 CT 检查：囊内可见分隔，壁结节，囊壁增厚，可见强化 (图 3)，CT 增强提示：考虑左肾囊肿肿瘤 (囊性肾癌可能)，于外院保肾手术治疗，术后病理提示：透明细胞癌。

讨论：囊性肾癌是指以囊性为主伴或不伴实性成分的肾癌，